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Abstract. Representing a space of handwriting stroke styles includes
the challenge of representing both the style of each character and the
overall style of the human writer. Existing VRNN approaches to repre-
senting handwriting often do not distinguish between these different style
components, which can reduce model capability. Instead, we introduce the
Decoupled Style Descriptor (DSD) model for handwriting, which factors
both character- and writer-level styles and allows our model to represent
an overall greater space of styles. This approach also increases flexibility:
given a few examples, we can generate handwriting in new writer styles,
and also now generate handwriting of new characters across writer styles.
In experiments, our generated results were preferred over a state of the
art baseline method 88% of the time, and in a writer identification task
on 20 held-out writers, our DSDs achieved 89.38% accuracy from a single
sample word. Overall, DSDs allows us to improve both the quality and
flexibility over existing handwriting stroke generation approaches.

1 Introduction

Producing computational models of handwriting is a deeply human and personal
topic—most people can write, and each writer has a unique style to their script.
Capturing these styles flexibly and accurately is important as it determines the
space of descriptive expression of the model; in turn, these models define the
usefulness of our recognition and generation applications. For deep-learning-based
models, our concern is how to architecture the neural network such that we can
represent the underlying stroke characteristics of the styles of writing.

Challenges in handwriting representation include reproducing fine detail,
generating unseen characters, enabling style interpolation and transfer, and using
human-labeled training data efficiently. Across these, one foundational problem
is how to succinctly represent both the style variation of each character and the
overall style of the human writer—to capture both the variation within an ‘h’
letterform and the overall consistency with other letterform for each writer.

As handwriting strokes can be modeled as a sequence of points over time,
supervised deep learning methods to handwriting representation can use recurrent
neural networks (RNNs) [17,2]. This allows consistent capture of style features
that are distant in time and, with the use of variational RNNs (VRNNs), allows
the diverse generation of handwriting by drawing from modeled distributions.
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However, the approach of treating handwriting style as a ‘unified’ property of a
sequence can limit the representation of both character- and writer-level features.
This includes specific character details being averaged out to maintain overall
writer style, and an reduced representation space of writing styles.

Instead, we explicitly represent 1) writer-, 2) character- and 3) writer-character-
level style variations within an RNN model. We introduce a method of Decoupled
Style Descriptors (DSD) that models style variations such that character style
can still depend on writer style. Given a database of handwriting strokes as
timestamped sequences of points with character string labels [32], we learn
a representation that encodes three key factors: writer-independent character
representations (Ch for character h, Chis for the word his), writer-dependent
character-string style descriptors (wh for character h, whis for the word his),
and writer-dependent global style descriptors (w per writer). This allows new
sequence generation for existing writers (via new wshe), new writer generation
via style transfer and interpolation (via new w), and new character generation
in the style of existing writers (via new C2, from only a few samples of character
2 from any writer). Further, our method helps to improve generation quality as
more samples are provided for projection, rather than tending towards average
letterforms in existing VRNN models.

In a qualitative user study, our model’s generations were preferred 88% of the
time over an existing baseline [2]. For writer classification tasks on a held-out
20-way test, our model achieves accuracy of 89.38% from a single word sample,
and 99.70% from 50 word-level samples. In summary, we contribute:

– Decoupled Style Descriptors as a way to represent latent style information;
– An architecture with DSDs to model handwriting, with demonstration appli-

cations in generation, recognition, and new character adaptation; and
– A new database—BRUSH (BRown University Stylus Handwriting)—of hand-

written digital strokes in the Latin alphabet, which includes 170 writers, 86
characters, 488 common words written by all writers, and 3668 rarer words
written across writers.

Our dataset, code, and model will be open source at http://dsd.cs.brown.edu.

2 Related Work

Handwriting modeling methods either handle images, which capture writing
appearance, or handle the underlying strokes collected via digital pens. Each
may be online, where observation happens along with writing, or offline. Offline
methods support historical document analysis, but cannot capture the motion of
writing. We consider an online stroke-based approach, which avoids the stroke
extraction problem and allows us to focus on modelling style variation. Work
also exists in the separate problem of typeface generation [12,5,31,24,41].

General style transfer methods. Current state-of-the-art style transfer works use
a part of the encoded reference sample as a style component, e.g., the output
of a CNN encoder for 2D images [26,29], or the last output of an LSTM for

http://dsd.cs.brown.edu
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Fig. 1: Illustrating synthesis approaches. Given test sample his for reference, we
wish to generate she in the same style. Left: Pixels of h and s are copied from
input with a slight modification [19]; however, this fails to synthesize e as it is
missing in the reference. Middle: A global latent writer style is inferred from his
and used as the initial state for LSTM generation [2]. Right: Our approach infers
both character and writer style vectors to improve quality and flexibility.

speech audio [34]. These can be mixed to allocate parts of a conditioning style
vector to disentangled variation [25]. Common style representations often cannot
capture small details, with neural networks implicitly filtering out this content
information, because the representations fail to structurally decouple style from
content in the style reference source. Other approaches [27,38] tackle this problem
by making neural networks predict parameters for a transformation model (an
idea that originates from neuroevolution [36,18]); our C prediction is related.

Recent image-based offline methods. Haines et al. produced a system to synthesize
new sentences in a specific style inferred from source images [19]. Some human
intervention is needed during character segmentation, and the model can only
recreate characters that were in the source images. Alonso et al. addressed the
labeling issue with a GAN-based approach [16,3]; however, their model presents
an image quality trade-off and struggles to generate new characters. There are also
studies on typeface generation from few reference data [4,37]: Baluja generates
typefaces for Latin alphabets [6], and Lian et al. for Chinese [30]. Our method
does not capture writing implement appearance, but does provides underlying
stroke generation and synthesizes new characters from few examples.

Stroke-based online methods. Deep learning methods, such as Graves’ work, train
RNN models conditioned on target characters [17,13,40]. The intra-variance of a
writer’s style was achieved with Mixture Density Networks (MDN) as the final
synthesis layer [10]. Berio et al. use recurrent-MDN for graffiti style transfer [9].
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Table 1: Property comparison of state-of-the-art handwriting generation models.
Style No human Infinite Synthesize mis- Benefit from Smooth Learn new

Method transfer? segmentation? variations? sing samples? more samples? interpolation? characters?

Graves (2013) No Yes Yes No No No No
Berio et al. (2017) Yes Yes Yes No No Sort of No
Haines et al. (2017) Yes No Sort of No Yes No No
Aksan et al. (2018) Yes Sort of Yes Yes No Sort of No
Ours Yes Yes Yes Yes Yes Yes Yes

However, these methods cannot learn to represent handwriting styles per writer,
and so cannot perform writer style transfer.

State-of-the-art models can generate characters in an inferred style [2]. Aksan
et al.’s DeepWriting model uses Variational Recurrent Neural Networks (VRNN)
[15] and assumes a latent vector z that controls writer handwriting style. Across
writers, this method tends to average out specific styles and so reduces detail.
Further, while sample efficient, VRNN models have trouble exploiting an abun-
dance of inference samples because the style representation is only the last hidden
state of an LSTM. We avoid this limitation by extracting character-dependent
style vectors from samples and querying them as needed in generation.

Sequence methods beyond handwriting. Learning-based architectures for sequences
were popularized in machine translation [14], where the core idea is to encode
sequential inputs into a fixed-length latent representation. Likewise, text-to-
speech processing has been improved by sequence models [33,35], with extensions
to style representation for speech-related tasks like speaker verification and voice
conversion. Again, one approach is to use the (converted) last output of an LSTM
network as a style representation [21]. Other approaches [22,23] models multiple
stylistic latent variables in a hierarchical manner and introduces an approach to
transfer styles within a standard VAE setting [28].

Broadly, variational RNN approaches [2,15,22] have the drawback that they
are incapability of improving generation performance with more inference samples.
While VRNNs are sample efficient when only a few samples are available for style
inference, a system should also generate better results as more inference samples
are provided (as in [19]). Our method attempts to be scalable and sample efficient
through learning decoupled underlying generation factors.

We compare properties of four state of the art handwriting synthesis models
(Tab. 1), and illustrate two of their different approaches (Fig. 1).

3 Method

Input, preprocess, and output. A stroke sequence x = (p1, . . . , pN ) has each pt
store the change in x- and y-axis from the previous timestep (∆xt = xt − xt−1,
∆yt = yt − yt−1), and a binary termination flag for the ‘end of stroke’ (eos =
{0, 1}). This creates an (N, 3) matrix. A character sequence s = (c1, . . . , cM )
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Fig. 2: High-level architecture. Circles are parametrized function approximators,
and rectangles/squares are variables. Blue region: Encoder-decoder architecture.
Orange region: Character-conditioned layers. Green region: Synthesis procedure.

contains character vectors ct where each is a one-hot vector of length equal to
the total number of characters considered. This similarly is an (M,Q) matrix.

The IAM dataset [32] and our stroke dataset were collected by asking par-
ticipants to naturally write character sequences or words, which often produces
cursive writing. As such, we must solve a segmentation problem to attribute
stroke points to specific characters in s. This is complex; we defer explanation to
our supplemental. For now, it is sufficient to say that we use unsupervised learning
to train a segmentation network kθ(x, s) to map regions in x to characters, and
to demark ‘end of character’ labels (eoc = {0, 1}) for each point.

As output, we wish to predict x′ comprised of p′t with: 1) coefficients for
Mixture Density Networks [10] (πt, µx, µy, σx, σy, ρ), which provide variation in
output by sampling ∆xt and ∆yt from these distributions at runtime; 2) ‘end
of stroke’ eos probability; and 3) ‘end of character’ eoc probability. This lets us
generate cursive writing when eos probability is low and eoc probability is high.

Decoupled Style Descriptors (DSD). We begin with the encoder-decoder archi-
tecture proposed by Cho et al. [14] (Fig. 2, blue region). Given a supervised
database x, s and a target string ct, to represent handwriting style we train a pa-
rameterized encoder function f encθ to learn writer-dependent character-dependent
latent vectors wct . Then, given wct , we simultaneously train a parameterized
decoder function fdecθ to predict the next point p′t given all past points p′1:t−1.
Both encoder and decoder fθ are RNNs such as LSTM models:

p′t = fdecθ (p′1:t−1|wct). (1)

This method does not factor character-independent writer style; yet, we have
no way of explicitly describing this property via supervision and so we must
devise a construction to learn it implicitly. Thus, we add a layer of abstraction
(Fig. 2, orange region) with three assumptions:
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1. If two stroke sequences x1 and x2 are written by the same writer, then
consistency in their writing style is manifested by a character-independent
writer-dependent latent vector w.

2. If two character sequences s1 and s2 are written by different writers, then
consistency in their stroke sequences is manifested by a character-dependent
writer-independent latent matrix C. C can be estimated via a parameterized
encoder function gθ, which is also an RNN such as an LSTM:

Cct = gθ(s, ct). (2)

3. Cct instantiates a writer’s style w to draw a character via wct , such that
Cct and w are latent factors:

wct = Cctw, (3)

w = C−1ct wct . (4)

This method assumes that Cct is invertible, which we will demonstrate in
Sec. 4. Intuitively, the multiplication of writer-dependent character vectors wct

with the inverse of character-DSD C−1ct (Eq. 4) factors out character-dependent
information from writer-dependent information in wct to extract a writer style
representation w. Likewise, Eq. 3 restores writer-dependent character wct by
multiplying the writer-specific style w with a relevant character-DSD Cct .

We use this property in synthesis (Fig. 2, green region). Given a target
character ct, we use encoder gθ to generate a C matrix. Then, we multiply Cct

by a desired writer style w to generate wct . Finally, we use trained decoder fdecθ

to create a new point p′t given previous points p′1:t−1:

p′t = fdecθ (p′1:t−1|wct), where wct = Cctw. (5)

Interpreting the linear factors. Eq. 3 states a linear relationship between Cct

and w. This exists at the latent representation level: wct and Cct are separately
approximated by independent neural networks f encθ and gθ, which themselves are
nonlinear function approximators [27,38]. As Cct maps a vector w to another
vector wct , we can consider Cct to be a fully-connected neural network layer
(without bias). However, unlike standard layers, Cct ’s weights are not implicitly
learned through backpropagation but are predicted by a neural network gθ in
Eq. 2. A further interpretation of Cct and C−1ct as two layers of a network is that
they respectively share a set of weights and their inverse. Explicitly forming Cct

in this linear way makes it simple to estimate Cct for new characters that are
not in the training dataset, given few sample pairs of wct and w, using standard
linear least squares methods (Sec. 4).

Mapping character and stroke sequences with fθ and gθ. Next, we turn our
attention to how we map sequences of characters and strokes within our function
approximators. Consider the LSTM f encθ : Given a character sequence s as size
of (M,Q) where M is the number of characters, and a stroke sequence x of size
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(N, 3) where N is the number of points, our goal is to obtain a style vector for
each character wct in that sequence. The output of our segmentation network kθ
preprocess defines ‘end of character’ bits, and so we know at which point in x
that a character switch occurs, e.g., from h to e in hello.

First, we encode x using f encθ to obtain a x∗ of size (N,L), where L is the
latent feature dimension size (we use 256). Then, from x∗, we extract M vectors
at these switch indices—these are our writer-dependent character-dependent
DSDs wct . As f encθ is an LSTM, the historical sequence data up to that index is
encoded within the vector at that index (Fig. 3, top). For instance, for his, x∗ at
switch index 2 represents how the writer writes the first two characters hi, i.e.,
whi. We refer to these wct as ‘writer-character-DSDs’.

Likewise, LSTM gθ takes a character sequence s of size (M,Q) and outputs an
array of C matrices that forms a tensor of size (M,L,L) and preserves sequential
dependencies between characters: The i-th element of the tensor Cci is a matrix
of size (L,L)—that is, it includes information about previous characters up to
and including the i-th character. Similar to x∗, for his, the second character
matrix Cc2 contains information about the first two characters hi—C is really a
character sequence matrix. Multiplying character information Cct with writer
style vector w creates a writer-character-DSD wct .

Estimating w. When we encode a stroke sequence x that
draws s characters via f encθ , we extract M character(s)-
dependent DSDs wct (e.g., wh, whi and whis, right). Via
Eq. 4, we obtain M distinct candidates for writer-DSDs
w. To overcome this, for each sample, we simply take the
mean to form w:

w =
1

M

M∑
t=1

C−1ct wct . (6)

Generation approaches via wct . Consider the synthesis task in Fig. 1: given our
trained model, generate how a new writer would write she given a reference
sample of them writing his. From the his sample, we can extract 1) segment-level
writer-character-DSDs (wh, wi, ws), and 2) the global w. To synthesize she, our
model must predict three writer-character-DSDs (ws,wsh,wshe) as input to the
decoder fdecθ . We introduce two methods to estimate wct :

Method α : wα
ct = Cctw (7a)

Method β : wβ
ct = hθ([wc1 , . . . ,wct ]) (7b)

where hθ is an LSTM that restore dependencies between temporally-separated
writer-character-DSDs as illustrated in Fig. 3, green rectangle. We train our
model to reconstruct wct both ways. This allows us to use method α when test
reference samples do not include target characters, e.g., his is missing an e for
she, and so we can reconstruct we via w and Ce (Fig. 3, right). It also allows us
to use Method β when test reference samples include relevant characters that,
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Fig. 3: Reconstruction methods to produce writer-character-DSD wct , with train-
ing sample s,x of his and test sample s of she. Green rectangle is hθ as defined in
Equation 7b. Training : Method α multiplies writer style w with each character
string matrix Cct . Method β restore temporal dependencies of segment-level
writer-character-DSDs (wh, wi, ws) via an LSTM , which produces higher-quality
results that are preferred by users (Sec. 4). Target test image is in red. Runtime:
Both prediction model Method α and β are combined to synthesize a new sample
given contents within the reference sample.

via f encθ , provide writer-character-DSDs, e.g., his contains s and h in she and so
we can estimate ws and wh. As these characters could come from any place in
the reference samples, hθ restores the missing sequence dependencies.

3.1 Training losses

We defer full architecture details for our supplemental material, and here explain
our losses. We begin with a point location loss L loc on predicted shifts in
x, y coordinates, (∆x,∆y). As we employ mixture density networks as a final
prediction layer in fdecθ , we try to maximize the probability for the target shifts
(∆x∗, ∆y∗) as explained by Graves et al. [17]:

L loc = −
∑
t

log
(∑

j

πjtN (∆x∗t , ∆y
∗
t |µx

j
t , µy

j
t , σx

j
t , σy

j
t , ρ

j
t )
)
.

Further, we consider ‘end of sequence’ flags eos and ‘end of character’ flags eoc
by computing binary cross-entropy losses L eos,L eoc for each.

Next, we consider consistency in predicting writer-DSD w from different
writer-character-DSDs wct . We penalize a loss L w that minimizes the variance
in wt in Equation 6:

L w =
∑
t

(w −wt)
2 (8)

Further, we penalize the reconstruction of each writer-character-DSD. We
compare the writer-character-DSD retrieved by f encθ from inference samples as
wct to their reconstructions (wα

ct , w
β
ct) via generation Methods α and β:

L
wct
A∈(α,β) =

∑
t

(wct −wA
ct)

2 (9)
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When t = 1, L
wc1
β = (wc1 − hθ(wc1))2. As such, minimizing this loss prevents

hθ in generation Method β from diluting the style representation wc1 generated
by f encθ because hθ is induced to output wc1 .

Each loss can be computed for three types of writer-character-DSD wct : those
predicted by f encθ , Method α, and Method β. These losses can also be computed
at character, word, and sentence levels, e.g., for words:

Lword =
∑

A∈(fenc
θ ,α,β)

(
L loc
A + L eos

A + L eoc
A + L w

A + L
wct
A

)
. (10)

Thus, the total loss is: Ltotal = Lchar + Lword + Lsentence.
L

wct
fenc
θ

= 0 by construction from Equation 9; we include it here for completeness.

Sentence-level losses help to make the model predict spacing between words.
While our model could train just with character- and word-level losses, this would
cause a problem if we ask the model to generate a sentence from a reference
sample of a single word. Training with Lsentence lets our model predict how a
writer would space words based on their writer-DSD w.

Implicit C inverse constraint. Finally, we discuss how L wct at the character
level implicitly constrains character-DSD C to be invertible. If we consider a
single character sample, then mean w in Equation 6 is equal to C−1c1 wc1 . In this

case, as wα
ct = Cctw (Eq. 7a), L

wct
α becomes:

L
wct
α = (wc1 −Cc1C

−1
c1 wc1)2 (11)

This value becomes nonzero when C is singular (CC−1 6= I), and so our model
avoids non-invertible Cs.

Training through inverses. As we train our network end-to-end, our model must
backpropagate through Cct and C−1ct . As derivative of matrix inverses can be

obtained with dC−1

dx = −C−1 dCdxC
−1, our model can train.

4 Experiments

Dataset. Our new dataset—BRUSH—provides characteristics that other on-
line English handwriting datasets do not, including the typical online English
handwriting dataset IAM [32]. First, we explicitly display a baseline in every
drawing box during data collection. This enables us to create handwriting samples
whose initial action is the x, y shift from the baseline to the starting point. This
additional information might also help improve performance in recognition tasks.

Second, our 170 individuals wrote 488 words in common across 192 sentences.
This helps to evaluate handwriting models and observe whether w and C are
decoupled: given a sample that failed to generate, we can compare the generated
results of the same word across writers. If writer A failed but B succeeded, then
it is likely that the problem is not with C representations but with either w or
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Fig. 4: Comparison of our proposed model vs. the state-of-the-art model [2]. Top:
(i) Example writing similarity ordering task assigned to MTurk workers. (ii)
Counts of most similar results with the target image. (iii) Sample-level vote.
Bottom: Three examples of task orderings; see supplemental for all 40. The model
of Aksan et al. [2] typically over-smooths the style and loses key details.

wct . If both A and B failed to draw the word but succeeding in generating other
words, it is likely that C or wct representations are to blame. We provide further
details about our dataset and collection process in our supplemental material.

Third, for DeepWriting [2] comparisons, we use their training and test splits
on IAM that mix writer identities—i.e., in training, we see some data from every
writer. For all other experiments, we use our dataset, where we split between
writers—our 20 test writers have never been seen writing anything in training.

Invertibility of C. To compute w in Equation 4, we must invert the character-
DSD C. Our network is designed to make C invertible as training proceeds by
penalizing a reconstruction loss for wct and CctC

−1
ct wct (Sec. 3.1). To test its

success, we compute Cs from our model for all single characters (86 characters)
and character pairs (862 = 7, 396 cases), and found C to have full rank in each
case. Next, we test all possible 3-character-strings (863 = 636, 056 cases). Here,
there were 37 rare cases with non-invertible Cs, such as 1Zb and 6ak. In these
cases, we can still extract two candidate w from the first two characters (e.g., 1
and 1Z in the 1Zb sample) to complete generation tasks.

Qualitative evaluation with users. We use Amazon Mechanical Turk to asked 25
participants to rank generated handwriting similarity to a target handwriting
(Fig. 4 (i)). We randomly selected 40 sentence-level target handwriting samples
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Fig. 5: Interpolation at different levels. (I) Original samples by two writers. (II)
At the writer-DSD w level. (III) At the writer-character-DSD wct level. (IV) At
C level. Left to right: Characters used are abcd, Lxhy, Rkmy, QWPg.

from the validation set of IAM dataset [32]. Each participant saw randomly-
shuffled samples; in total, 600 assessments were made. We compared the abilities
of three models to generate the same handwriting style without seeing the actual
target sample. We compare to the state-of-the-art DeepWriting model [2], which
uses a sample from the same writer (but of a different character sequence) for
style inference. We test both Methods α and β from our model. Method α uses
the same sample to predict w and to generated a new sample. Method β randomly
samples 10 sentence-level drawing by the target writer and creates a sample with
the algorithm discussed in Sec. 3. DeepWriting cannot take advantage of any
additional character samples at inference time because it estimates only a single
character-independent style vector.

Figure 4 (ii) displays how often each model was chosen as the most similar to
the target handwriting; our model with sampling algorithm was selected 5.22×
as often as Aksan et al.’s model. Figure 4 (iii) displays which model was preferred
across the 40 cases: of the 15 assessments per case, we count the number of times
each model was the most popular. We show all cases in supplemental material.

Interpolation of w, wct , and C. Figure 5 demonstrates that our method can
interpolate (II) at the writer-DSD w level, (III) at the writer-character-DSD wct

level, and (IV) at the character-DSD C level. Given two samples of the same
word by two writers xA and xB, we first extract writer-character-DSDs from
each sample (e.g., wA

rhy, wB
rhythm), then we derive writer-DSDs wA and wB as in

Sec. 3. To interpolate by γ between two writers, we compute the weighted average
wC = γwA + (1 − γ)wB. Finally, we reconstruct writer-character-DSDs from
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Fig. 6: Predicting C from new character samples, given a version of our model
that is not trained on numbers. As we increase the number of samples used to
estimate C, the better the stylistic differences are preserved when multiplying
with ws from different writers A and B. Note: neither writers provided numeral
samples; by our construction, samples can come from any writer.

wC (e.g., wC
rhy = CrhywC) and feed this into fdecθ to generate a new sample.

For (III), we simply interpolate at the sampled character-level (e.g., wA
rhy and

wB
rhy). For (IV), we bilinearly interpolate four character-DSDs Cct placed at the

corners of each image: C = (rA ×CA + rB ×CB + rC ×CC + rD ×CD), where
all r sum to 1. From C, we compute a writer-character-DSD as wc = CW and
synthesize a new sample. In each case (II-IV), our representations are smooth.

Synthesis of new characters. Our approach allows us to generate handwriting
for new characters from a few samples from any writer. Let us assume that
writer A produces a new character sample 3 that is not in our dataset. To
make 3 available for generation in other writer styles, we need to recover the
character-DSD C3 that represents the shape of the character 3. Given x for
newly drawn character 3, encoder f encθ first extracts the writer-character-DSD
w3. Assuming that writer A provided other non-3 samples in our dataset, we
can compute multiple writer-DSD w for A. This lets us solve for C3 using least
squares methods. We form matrices Q,P3 where each column of Q is one specific
instance of w, and where each column of P3 is one specific instance of w3.
Then, we minimize the sum of the squared error, which is the Frobenius norm
‖C3Q−P3‖2F , e.g., via C3 = P3Q

+.
As architectured (and detailed in supplemental), gθ actually has two parts:

an LSTM encoder gLSTM
θ that generates a 256×1 character representation vector

crawct for a substring ct, and a fully-connected layer gFC2
θ that expands crawct and

reshapes it into a 256× 256 matrix Cct = gFC2
θ (crawct ). Further, as the output of

an LSTM, we know that crawct should be constrained to values [−1,+1]. Thus,
for this architecture, we directly optimize the (smaller set of) parameters of
the latent vector crawct to create Cct given the pre-trained fully-connected layer
weights, using a constrained non-linear optimization algorithm (L-BFGS-B) via
the objective f(crawct ) = ‖P3 − gFC2

θ (crawct )Q‖2F .
To examine this capability of our approach, we retrained our model with a

modified dataset that excluded numbers. In Figure 6, we see generation using our
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estimate of new Cs from different sample counts. We can generate numerals in
the style of a particular writer even though they never drew them, using relatively
few drawing samples of the new characters from different writers.

Writer recognition task. Writer recognition systems try to assign test samples (e.g.,
a page of handwriting) to a particular writer given an existing database. Many
methods use codebook approaches [8,11,20,7] to catalogue characteristic patterns
such as graphemes, stroke junctions, and key-points from offline handwriting
images and compare them to test samples. Zhang et al. [39] extend this idea
to online handwriting, and Adak et al. study idiosyncratic character style per
person and extract characteristic patches to identify the writer [1].

To examine how well our model might represent the latent distribution of
handwriting styles, we perform a writer recognition task on our trained model
on the randomly-selected 20-writer hold out set from our dataset. First, we
compute 20 writer DSDs wwriter

i from 10 sentence-level samples—this is our
offline ‘codebook’ representing the style of each writer. Then, for testing, we
sample from 1–50 new word-level stroke sequences per writer (using words with at
least 5 characters), and calculate the corresponding writer DSDs (N = 1, 000 in
total). With the vector L of true writer labels, we compute prediction accuracy:

A =
1

N

N∑
i=1

I(Li, arg min
j

(wword
i −wwriter

j )2), I(x, y) =

{
1, if x = y

0, otherwise
(12)

We repeated the random sampling of 1–50
words over 100 trials and compute mean
accuracy and standard error. When multi-
ple test samples are provided, we predict
writer identity for each word and average
their predictions. Random accuracy perfor-
mance is 5%. Our test prediction accuracy
rises from 89.20%± 6.23 for one word sample,
to 97.85% ± 2.57 for ten word samples, to
99.70%±1.18 for 50 word samples. Increasing
the number of test samples per writer increases accuracy because some words
may not be as characteristic as others (e.g., ‘tick’ vs. ‘anon’). Overall, while our
model was not trained to perform this classification task, we can still achieved
promising accuracy results from few samples—this is an indication that our latent
space is usefully descriptive.

Additional experiments. In our supplemental material, along with more archi-
tecture, model training procedure, and sampling algorithm details, we also: 1)
compare to two style extraction pipelines, a stacked FC+ReLU layers and AdaIN,
and find our approach more capable; 2) demonstrate the importance of learning
style and content of character-DSD C by comparing with a randomly-initialized
version; 3) ablate parts of our loss function, and illustrate key components;
4) experimentally show that our model is more efficient than DeepWriting by
comparing generation given the same number of model parameters.
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5 Discussion

While users preferred our model in our study, it still sometimes fails to generate
readable letters or join cursive letters. One issue here is the underlying inconsis-
tency in human writers, which we only partially capture in our data and represent
in our model (e.g., cursive inconsistency). Another issue is collecting high-quality
data with digital pens in a crowdsourced setting, which can still be a challenge
and requires careful cleaning (see supplemental for more details).

Decoupling additional styles. Our model could potentially scale to more styles.
For instance, we might create an age matrix A from a numerical age value a as C
is constructed from ct, and extract character-independent age-independent style
descriptor as w∗ = A−1C−1ct wct . Introducing a new age operator A invites our
model to find latent-style similarities across different age categories (e.g., between
a child and a mature writer). Changing the age value and thus A may predict
how a child’s handwriting changes as s/he becomes older. However, training
multiple additional factors in this way is likely to be challenging.

Alternatives to linear C multiplication operator. Our model can generate new
characters by approximating a new C matrix from few pairs of w and wct

thanks to their linear relationship. However, one might consider replacing our
matrix multiplication ‘operator’ on C with parametrized nonlinear function
approximators, such as autoencoders. Multiplication by C−1 would become an
encoder, with multiplication by C being a decoder; in this way, gθ would be
tasked with predicting encoder weights given some predefined architecture. Here,
consistency with w must still be retained. We leave this for future work.

6 Conclusion

We introduce an approach to online handwriting stroke representation via the
Decoupled Style Descriptor (DSD) model. DSD succeeds in generating drawing
samples which are preferred more often in a user study than the state-of-the-art
model. Further, we demonstrate the capabilities of our model in interpolating
samples at different representation levels, recovering representations for new
characters, and achieving a high writer-identification accuracy, despite not being
trained explicitly to perform these tasks. Online handwriting synthesis is still
challenging, particularly when we infer a stylistic representation from few numbers
of samples and try to generate new samples. However, we show that decoupling
style factors has potential, and believe it could also apply to style-related tasks
like transfer and interpolation in other sequential data domains, such as in speech
synthesis, dance movement prediction, and musical understanding.
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