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Handwriting generation:

Direct Pixel
Representation

- Pixel representation [2]

Input sample
for inference

Internal style
representation

Synthesized
result

Haines et al. [2]
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[2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016).



Handwriting generation:

Direct Pixel Character-Independent
Representation Latent Style Vector

- Pixel representation [2]
- Learned by neural networks [1]

Input sample
for inference
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Handwriting generation:

- Pixel representation [2]

Direct Pixel Character-Independent
Representation Latent Style Vector

- Learned by neural networks [1]

Input sample
for inference

Limitations:

Internal style

representation
- Generating missing characters
- Generating fine details
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result
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Direct Pixel Character-Independent
Representation Latent Style Vector

Underlying problem: ot e /
No explicit separation of writer style orierence
from character style.

Internal style /

representation /Z ‘
Synthesized /
result X
Haines et al. [2] Aksan et al. [1]

[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).
[2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016).
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Direct Pixel Character-Independent  Character-Specific
Representation Latent Style Vector Latent Style Vector

Input sample /Z - % .
We learn to decouple writer and trinerance || (| ) | A

character style into specific vectors.

Internal style

representation D/ €

Synthesized y A
[ /Z e /Z Lo

Haines et al. [2] Aksan et al. [1] Ours

[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018). 10
[2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016).



Problem statement

Desired output data:

- Writer-independent
character style representation
- Character-independent
writer style representation w

Character style
representation

Writer style
representation

][
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Problem statement

Desired output data:

- Writer-independent
character style representation
- Character-independent
writer style representation w

Input data:

- Strokes as point sequences (X, v, t)
- Character labels as one-hot vectors

Character style Writer style
representation representation

][

Character Input drawing
Label (Nx3)

4
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Decoupled Style Descriptors (DSD)

We learn a linear relationship between

- Writer-DSD w and
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Decoupled Style Descriptors (DSD)

We learn a linear relationship between

- Writer-DSD w and
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Character
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Decoupled Style Descriptors (DSD)

. . . Writer-DSD
We learn a linear relationship between (2561 Vestor
- Writer-DSD w and W
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Decoupled Style Descriptors (DSD)

. . . Writer-DSD Writer-Ch ter-DSD
We learn a linear relationship between (256x1 Veotor)  (256x1 Vector)
- Writer-DSD w and w W,
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Character Input drawing
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Decoupled Style Descriptors (DSD)

We learn a linear relationship between

- Writer-DSD w and

through learned LSTM encoders g, and f.

Writer-DSD Writer-Character-DSD
(256x1 Vector) (256x1 Vector)
w W,

| = |
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Character Input drawing
Label (Nx3)
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Decoupled Style Descriptors (DSD)

. . . Writer-Ch ter-DSD Writer-DSD
We learn a linear relationship between (256x1 Vecto) (2561 Veston

- Writer-DSD w and W w

through learned LSTM encoders g, and f.
Simply invert C,  to recover w from W, ..

Character Input drawing
Label (Nx3)
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Decoupled Style Descriptors (DSD)

. . . Writer-Ch ter-DSD Writer-DSD
We learn a linear relationship between (256x1 Vecto) (2561 Veston

- Writer-DSD w and W w

through learned LSTM encoders g, and f.
Simply invert C,  to recover w from W, ..

Character Input drawing
Label (Nx3)

Retains more fine detail. %
Allows few-shot learning for new characters,

and writer identification.
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Decoupled Style Descriptors (DSD)

Input drawing Writer-Character-DSD Writer-Character-DSD
(Nx3) (256x1 Vector) (256x 1V ctor)

x Sequence Encoder W‘ha
G [EGR.

Recons truction

At the core, we have LSTM-based autoencoder, similar to the work by Graves [3].
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Decoupled Style Descriptors (DSD)

Label Character Encoder

(M)

& >) g
0 N
Character-DSD

(256x256 Matrix)

Cu

Input drawing Writer-Character-DSD
(Nx3) (256x1 Vector)

x Sequence Encoder W‘h,
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Decoupled Style Descriptors (DSD)

Character-DSD
1 (256x256 Matrix)

C‘-h’ ¢ inverse C‘h’
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Decoupled Style Descriptors (DSD)

Writer-Character-DSD
(256x1 Vector) Writer-DSD
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Decoupled Style Descriptors (DSD)

Character-DSD
(256x256 Matrix)

Cr
Writer-Character-DSD
Writer-DSD (256x1 Vector)
(256 x1 Vector)

‘h
Matrlx
Multlpllcatlon

24



Decoupled Style Descriptors (DSD)

Input drawing Writer-Character-DSD Writer-Character-DSD

(Nx3) (256 x1 Vector) (256x1 Vector) Reconstruction

Sequence Encoder

%fl

Sequence Decoder

&
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Decoupled Style Descriptors (DSD)

Synthesis
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Decoupled Style Descriptors (DSD)

Label
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Input drawing
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x Sequence Encoder
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Character Encoder
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Writer-Character-DSD
(256x1 Vector)
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inverse
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Character-DSD
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Writer-DSD
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Subsequences rather than single characters

Writing is complex:
- Cursive
- Character pairs (ligatures)
- Delayed strokes (f, t, i, j)
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Subsequences rather than single characters

Writing is complex:
- Cursive
- Character pairs (ligatures)
- Delayed strokes (f, t, i, j)

Our approach actually represents latent space of all subsequences of characters.
Word ‘his’ has representations , , and

and w w,hi,,and W,

‘h”’ his’*
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Recovering Writer-DSD w
from handwriting samples

Take mean w over subsequences:

1 M
— § : —1
W = M Cct We,
t=1

-1
Chis
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Generating handwriting
using a global WNriter-DSD w

Given a target word ‘his’:

Predict C, , , and
Multiply by w to create w, , w, ,andw,

Decode (w,, w, , w, ) into stroke

h

sequence

Ch
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Single-character Writer-Character-DSD

There are relatively few single-character w, .

If we extract them from a writing sample,
we can save them in a database and / : )
sample them during generation.
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Generating handwriting
using sampled \Writer-Character-DSD

Retrieve relevant single-characters w,, W, W, @ @ @
LSTM
Restore temporal dependencies via LSTM. ’]\

Cannot cope with any missing characters in reference handwriting samples.
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Combined method with sampling

Reference sample: ‘his’

Generation target: ‘she’

- Compute mean w from all substrings
- Predict w,, with C_ and the mean w
- Extract single-character Writer-Character-DSDs

- Restore temporal dependencies with LSTM.

7
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-

LSTM
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Generated Results

Colored characters match
between provided writing

The ?w‘ck brown {oy
samples and desired output.

These are generated from CATHERINE Vo x el tnflevible

retrieved w,,

AHM \<\ Stam ov@l v\:) [va«’ vol\

Missing characters are
generated from global w
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Generated Results

Target Image
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‘ Ours w/ sampling
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‘ Ours w/ global DSD
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Generated Results - Comparison
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Interpolation

source A / source B ratio
100/0 75/ 25 50/ 50 25/75 0/100

True samples (I)  rdythm Y %Z‘—Hq A
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Interpolation

True samples

Writer-DSD level
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Interpolation

True samples (1)

Writer-DSD level (1)

Writer-Character-DSD level  (lll)
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Interpolation
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Few-shot learning of New Characters

Writer A Writer B
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Writer Identification

In a 20-writer identification task,

our model achieved:

89.20% * 6.23 for 1 word sample
99.70% £ 1.18 for 50 word samples

Identification Accuracy

0.95

0.9

0.85

e

10 20 30 40
Number of samples used for voting

50
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BRUSH dataset

BRUSH dataset contains handwriting of:

170 writers, 86 Latin alphabet characters

488 common words written by all writers

+ 3668 rarer words written across writers

99.5% coverage of two-character letter space

99.9% coverage in total

1/20 pages

qualins poltics; (A 3
7ua/ms f)o/i Zics 5 LA

ington, Hamiin
} [s(rvvﬂom) Howeli

dwelng Frasir
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BRUSH dataset

BRUSH dataset contains handwriting of:

1/20 pages

- 170 writers, 86 Latin alphabet characters i
- 488 common words written by all writers 7M51/ms PO/ZWCS , LA

- 99.5% coverage of two-character letter space Islington, Hamlin
- + 3668 rarer words written across writers | :

[slongton, Houmline
- 99.9% coverage in total x
dwelling. Frankfurt

Common word samples & character-level labels

are not present in IAM dataset [4].
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Generating Handwriting via Decoupled Style Descriptors BROWN
’Q

Atsunobu Kotani, Stefanie Tellex, James Tompkin ; @ Computer Science
Contributions:
Writer-DSD Writer-Character-DSD
(256x1 Vector) (256x1 Vector)
- DSDs decouple character style from writer style. w W,

- Allow flexible handwriting generation.

- BRUSH: new dataset for online handwriting. ‘ I - A

Character Input drawing
Label (Nx3)

4

Code & dataset available at

http://dsd.cs.brown.edu
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Generating Handwriting via Decoupled Style Descriptors BROWN
’Q

Atsunobu Kotani, Stefanie Tellex, James Tompkin ; @ Computer Science
Contributions:
Writer-DSD Writer-Character-DSD
(256x1 Vector) (256x1 Vector)
- DSDs decouple character style from writer style. w W,

- Allow flexible handwriting generation.
- BRUSH: new dataset for online handwriting.

Potential Extension:

- Explicit decoupling may work better than Sl s
implicit decoupling / disentanglement. %

- DSDs could be applied to other sequential data Code & dataset available at
(e.g. speech, motion capture data) htto://dsd.cs.brown.edu
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