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Handwriting generation:

- Pixel representation [2]

[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).
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Handwriting generation:

- Pixel representation [2]

- Learned by neural networks [1]

Limitations:

- Generating missing characters

- Generating fine details

[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).

[2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016). 8



Underlying problem:

No explicit separation of writer style

from character style.

[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).

[2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016). 9



We learn to decouple writer and 

character style into specific vectors.

[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).

[2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016). 10



Problem statement

Desired output data:

- Writer-independent 

character style representation C
‘h’

 

- Character-independent

writer style representation w
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Problem statement

Desired output data:

- Writer-independent 

character style representation C
‘h’

 

- Character-independent

writer style representation w

Input data:

- Strokes as point sequences (x, y, t)

- Character labels as one-hot vectors
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Decoupled Style Descriptors (DSD)

We learn a linear relationship between 

- Writer-DSD w and 

- Character-DSD C
‘h’

13



Decoupled Style Descriptors (DSD)

We learn a linear relationship between 

- Writer-DSD w and 

- Character-DSD C
‘h’

14



Decoupled Style Descriptors (DSD)

We learn a linear relationship between 

- Writer-DSD w and 

- Character-DSD C
‘h’

15



Decoupled Style Descriptors (DSD)

We learn a linear relationship between 

- Writer-DSD w and 

- Character-DSD C
‘h’

16



Decoupled Style Descriptors (DSD)

We learn a linear relationship between 

- Writer-DSD w and 

- Character-DSD C
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We learn a linear relationship between 

- Writer-DSD w and 

- Character-DSD C
‘h’

through learned LSTM encoders gθ and fθ.

Simply invert C
‘h’ 

to recover w from w
‘h’

.
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We learn a linear relationship between 

- Writer-DSD w and 

- Character-DSD C
‘h’

through learned LSTM encoders gθ and fθ.

Simply invert C
‘h’ 

to recover w from w
‘h’

.

Retains more fine detail.

Allows few-shot learning for new characters, 

and writer identification.

Decoupled Style Descriptors (DSD)
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Decoupled Style Descriptors (DSD)

[3] Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

At the core, we have LSTM-based autoencoder, similar to the work by Graves [3].
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Subsequences rather than single characters

Writing is complex:

- Cursive

- Character pairs (ligatures)

- Delayed strokes (f, t, i, j)
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Subsequences rather than single characters

Writing is complex:

- Cursive

- Character pairs (ligatures)

- Delayed strokes (f, t, i, j)

Our approach actually represents latent space of all subsequences of characters.

Word ‘his’ has representations      C
‘h’

,  C
‘hi’

,  and C
‘his’

.

    and      w
‘h’

, w
‘hi’

, and w
‘his’

.
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Take mean w over subsequences:

Recovering Writer-DSD w 
from handwriting samples
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Given a target word ‘his’:

- Predict C
‘h’

,  C
‘hi’

,  and C
‘his’

- Multiply by w to create w
‘h’

, w
‘hi’

, and w
‘his’

- Decode (w
‘h’, 

w
‘hi’, 

w
‘his’

) into stroke 

sequence

Generating handwriting 
using a global Writer-DSD w
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Single-character Writer-Character-DSD
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There are relatively few single-character w
‘h’

.

If we extract them from a writing sample, 

we can save them in a database and 

sample them during generation.



Retrieve relevant single-characters w
‘h’

, w
‘i’

, w
‘s’

.

Restore temporal dependencies via LSTM.

Generating handwriting 
using sampled Writer-Character-DSD
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LSTM

Cannot cope with any missing characters in reference handwriting samples.



Reference sample: ‘his’

Generation target: ‘she’

- Compute mean w from all substrings

- Predict w
‘e’

 with C
‘e’

 and the mean w

- Extract single-character Writer-Character-DSDs

- Restore temporal dependencies with LSTM.

Combined method with sampling
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Generated Results

Colored characters match 

between provided writing 

samples and desired output.

These are generated from 

retrieved w
‘h’

Missing characters are 

generated from global w 
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Generated Results - Comparison

37[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).



True samples

Interpolation
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True samples

Interpolation
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Few-shot learning of New Characters
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In a 20-writer identification task, 

our model achieved:

89.20% ± 6.23 for 1 word sample

99.70% ± 1.18 for 50 word samples

Writer Identification
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BRUSH dataset
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BRUSH dataset contains handwriting of:

- 170 writers, 86 Latin alphabet characters

- 488 common words written by all writers

- 99.5% coverage of two-character letter space

- + 3668 rarer words written across writers

- 99.9% coverage in total
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BRUSH dataset contains handwriting of:

- 170 writers, 86 Latin alphabet characters

- 488 common words written by all writers

- 99.5% coverage of two-character letter space

- + 3668 rarer words written across writers

- 99.9% coverage in total

Common word samples & character-level labels 

are not present in IAM dataset [4].

[4] Marti, U.V., Bunke, H.: The iam-database: an english sentence database for offline handwriting recognition. IJDAR (2002).



Contributions:

- DSDs decouple character style from writer style.

- Allow flexible handwriting generation.

- BRUSH: new dataset for online handwriting.
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Contributions:

- DSDs decouple character style from writer style.

- Allow flexible handwriting generation.

- BRUSH: new dataset for online handwriting.

Potential Extension:

- Explicit decoupling may work better than 

implicit decoupling / disentanglement.

- DSDs could be applied to other sequential data 

(e.g. speech, motion capture data)
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