# Generating Handwriting via Decoupled Style Descriptors



Atsunobu Kotani



Stefanie Tellex



James Tompkin











Handwriting generation:

- Pixel representation [2]



[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).
 [2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016).

Handwriting generation:

- Pixel representation [2]
- Learned by neural networks [1]



[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).
 [2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016).

Handwriting generation:

Limitations:

- Pixel representation [2]
- Learned by neural networks [1]

Generating missing characters

Generating fine details



[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).[2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016).



[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).
 [2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016).



[1] Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. SIGCHI (2018).
 [2] Haines, T.S.F., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. 35(3) (May 2016).

### **Problem statement**

Desired output data:

- Writer-independent
  character style representation C<sub>(h</sub>,
- Character-independent
  writer style representation w



### **Problem statement**

Desired output data:

- Writer-independent
  character style representation C<sub>(h</sub>,
- Character-independent
  writer style representation w

#### Input data:

- Strokes as point sequences (x, y, t)
- Character labels as one-hot vectors



- Writer-DSD w and
- Character-DSD C<sub>'h'</sub>

- Writer-DSD w and
- Character-DSD C<sub>'h'</sub>



- Writer-DSD w and
- Character-DSD C<sub>'h'</sub>



- Writer-DSD w and
- Character-DSD C<sub>'h'</sub>



We learn a *linear* relationship between

- Writer-DSD w and
- Character-DSD C,,,

through learned LSTM encoders  $\boldsymbol{g}_{\theta}$  and  $\boldsymbol{f}_{\theta}.$ 



We learn a *linear* relationship between

- Writer-DSD w and
- Character-DSD C,,,

through learned LSTM encoders  $\mathbf{g}_{\theta}$  and  $\mathbf{f}_{\theta}$ .

**Simply invert**  $C_{(h)}$  to recover w from  $w_{(h)}$ .



We learn a *linear* relationship between

- Writer-DSD w and
- Character-DSD C,,,

through learned LSTM encoders  $\mathbf{g}_{\theta}$  and  $\mathbf{f}_{\theta}$ . Simply invert  $\mathbf{C}_{(\mathbf{h})}$  to recover **w** from  $\mathbf{w}_{(\mathbf{h})}$ .

Retains *more fine detail*.

Allows *few-shot learning* for new characters, and *writer identification*.





#### At the core, we have LSTM-based autoencoder, similar to the work by Graves [3].















### Subsequences rather than single characters

Writing is complex:

- Cursive
- Character pairs (ligatures)
- Delayed strokes (f, t, i, j)

### Subsequences rather than single characters

Writing is complex:

- Cursive
- Character pairs (ligatures)
- Delayed strokes (f, t, i, j)

Our approach actually represents latent space of *all subsequences of characters*. Word 'his' has representations  $C_{h''}$ ,  $C_{hi''}$ , and  $C_{his'}$ .

and  $\mathbf{w}_{\text{'h''}}, \mathbf{w}_{\text{'hi''}}$ , and  $\mathbf{w}_{\text{'his''}}$ .

# Recovering Writer-DSD w from handwriting samples

Take mean w over subsequences:

$$\overline{\mathbf{w}} = \frac{1}{M} \sum_{t=1}^{M} \mathbf{C}_{c_t}^{-1} \mathbf{w}_{c_t}$$



# Generating handwriting using a *global* Writer-DSD w

Given a target word 'his':

- Predict C<sub>'h'</sub>, C<sub>'hi'</sub>, and C<sub>'his'</sub>
- Multiply by w to create w<sub>(h'</sub>, w<sub>(hi'</sub>, and w<sub>(his'</sub>
- Decode (w<sub>'h'</sub>, w<sub>'hi'</sub>, w<sub>'his'</sub>) into stroke
  sequence



# Single-character Writer-Character-DSD There are relatively few single-character $\mathbf{w}_{th}$ . If we extract them from a writing sample, we can save them in a **database** and **sample** them during generation. Wh Wi

Ws

# Generating handwriting using *sampled* Writer-Character-DSD

Retrieve relevant single-characters  $\mathbf{w}_{i_{1}'}, \mathbf{w}_{i_{2}'}, \mathbf{w}_{i_{2}'}$ 

Restore temporal dependencies via LSTM.



Cannot cope with any missing characters in reference handwriting samples.

# Combined method with *sampling*

Reference sample: 'his'

Generation target: 'she'

- Compute mean w from all substrings
- Predict w<sub>(p)</sub> with C<sub>(p)</sub> and the mean w
- Extract single-character Writer-Character-DSDs
- Restore temporal dependencies with LSTM.



# **Generated Results**

Colored characters match between provided writing samples and desired output.

These are generated from retrieved  $\mathbf{w}_{\mathbf{b}'}$ 

Missing characters are generated from global w

The quick brown fox CATHERINE Vauxhall inflexible Ahhlele! Stamford orb Crayford

# **Generated Results**

| Target Image       | particy larly   | 1 to see ho.  | the Connecticut |
|--------------------|-----------------|---------------|-----------------|
| Ours w/ global DSD | particularly    | d to see her  | the connecticut |
| Ours w/ sampling   | particularly    | d to see hes  | the Connecticut |
| Target Image       | gether with the | young offende | earth, guardit  |
| Ours w/ global DSD | gether with the | young offende | ealth mant      |
| Ours w/ sampling   | gethes with the | young offende | ealth mout      |
|                    |                 |               | ≺ <i>⊦</i>      |

# **Generated Results - Comparison**









# Few-shot learning of New Characters

|                    | Writer A            | Writer B            |
|--------------------|---------------------|---------------------|
| Source for W       | gualms politics, EA | gualms politics; EA |
| C from 1 sample    | 6477826754          | 610-20-26-554       |
| C from 10 samples  | 012346759           | 0123486509          |
| C from 100 samples | 0123456789          | 0123456789          |

# Writer Identification

In a 20-writer identification task,

our model achieved:

89.20% ± 6.23 for 1 word sample99.70% ± 1.18 for 50 word samples



Number of samples used for voting

# **BRUSH** dataset

BRUSH dataset contains handwriting of:

- 170 writers, 86 Latin alphabet characters
- 488 common words written by all writers
  - 99.5% coverage of two-character letter space
- + 3668 rarer words written across writers
  - 99.9% coverage in total

| Data Collection                                                                 | Log Out                |
|---------------------------------------------------------------------------------|------------------------|
| When you scroll the page, please not to scroll on the drawing boxe $1/20$ pages | es but the side space. |
| qualms politics; [A                                                             | CLEAR UNDO             |
| qualms polizics; [A                                                             | baseline               |
| Islington, Hamlin                                                               | CLEAR UNDO             |
| Islington, Hamlin                                                               | baseline               |
| dwelling. Frankfurt                                                             | CLEAR UNDO             |

# **BRUSH** dataset

**BRUSH** dataset contains handwriting of:

- 170 writers, 86 Latin alphabet characters
- 488 common words written by all writers
  - 99.5% coverage of two-character letter space
- + 3668 rarer words written across writers
  - 99.9% coverage in total

Common word samples & character-level labels are not present in IAM dataset [4].

| Data Collection                                                       | Log Out                         |
|-----------------------------------------------------------------------|---------------------------------|
| When you scroll the page, please not to scroll on the dr $1/20$ pages | awing boxes but the side space. |
| qualms politics; [A                                                   | CLEAR UNDO                      |
| qualms polizics;                                                      | [A Duseline                     |
| Islington, Hamlin                                                     | CLEAR UNDO                      |
| IslingTon, Hamlin                                                     | <b>L</b> baseline               |
| dwelling, Frankfurt                                                   | CLEAR UNDO                      |

#### Generating Handwriting via Decoupled Style Descriptors Atsunobu Kotani, Stefanie Tellex, James Tompkin

#### **Contributions:**

- DSDs decouple character style from writer style.
- Allow flexible handwriting generation.
- BRUSH: new dataset for online handwriting.





Code & dataset available at http://dsd.cs.brown.edu

### Generating Handwriting via Decoupled Style Descriptors Atsunobu Kotani, Stefanie Tellex, James Tompkin

#### **Contributions:**

- DSDs decouple character style from writer style.
- Allow flexible handwriting generation.
- BRUSH: new dataset for online handwriting.

#### Potential Extension:

- Explicit decoupling may work better than implicit decoupling / disentanglement.
- DSDs could be applied to other sequential data (e.g. speech, motion capture data)





Code & dataset available at http://dsd.cs.brown.edu